Dissection of Mechanisms of a Chinese Medicinal Formula: Danhong Injection Therapy for Myocardial Ischemia/Reperfusion Injury In Vivo and In Vitro

نویسندگان

  • Yue Guan
  • Ying Yin
  • Yan-Rong Zhu
  • Chao Guo
  • Guo Wei
  • Jia-Lin Duan
  • Yan-Hua Wang
  • Dan Zhou
  • Wei Quan
  • Yan Weng
  • Miao-Miao Xi
  • Ai-Dong Wen
چکیده

Traditional Chinese medicine uses a systemic treatment approach, targeting multiple etiological factors simultaneously. Danhong injection (DHI), a very popular Chinese medicine injection, is reported to be effective for many cardiovascular conditions. The primary active ingredients of DHI, and their systemic and interrelated mechanism have not been evaluated in an established myocardial ischemia/reperfusion (MI/R) model. We identified the main active constituents in DHI, including hydroxysafflor yellow A (A), salvianolic acid B (B), and danshensu (C), by HPLC fingerprint analysis and assessed their effect on MI/R rats and cardiomyocytes. These 3 compounds and DHI all decreased the levels of IL-1, TNF- α , and MDA, increased those of IL-10 and SOD activity in vivo and in vitro, and had antiapoptotic effects, as shown by flow cytometric analysis and TUNEL assay. Moreover, these compounds increased phosphorylation of Akt and ERK1/2 in cardiomyocytes. Interestingly, we found compound A exerted a more prominent anti-inflammatory effect than B and C, by decreasing NF- κ B levels; compound B had more powerful antioxidative capacity than A and C, by increasing Nrf2 expression; compound C had stronger antiapoptotic ability than A and B, by lowering caspase-3 activity. Our results elucidate the mechanisms by which DHI protects against MI/R induced injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carthamus tinctorius L. ameliorates brain injury followed by cerebral ischemia-reperfusion in rats by antioxidative and anti-inflammatory mechanisms

Objective(s): Carthamus tinctorius L. (CT) or saffloweris widely used in traditional Chinese medicine. This study investigated the effects of CT extract (CTE) on ischemia–reperfusion (I/R) brain injury and elucidated the underlying mechanism. Materials and Methods: The I/R model was conducted by occlusion of both common carotid arteries and right middle cerebral artery for 90 min followed by 24...

متن کامل

Pathophysiology of Ischemia/Reperfusion-induced Myocardial Injury: What We Have Learned From Preconditioning and Postconditioning?

Organ damage after reperfusion of previously viable ischemic tissues is defined as ischemia/reperfusion injury. The pathophysiology of ischemia/reperfusion injury involves cellular effect of ischemia, reactive oxygen species and inflammatory cascade. Protection against ischemia/reperfusion injury may be achieved by preconditioning or postconditioning. In this review, we discuss basic mechan...

متن کامل

Paeoniflorin has anti-inflammation and neurogenesis functions through nicotinic acetylcholine receptors in cerebral ischemia-reperfusion injury rats

Objective(s): Paeoniflorin (PF) has anti-oxidation, anti-inflammation, anti-apoptosis, and neuroprotection pharmacological effects against ischemic injury. The aim of the present study was to investigate the neuroprotection mechanisms of PF in cerebral ischemia-reperfusion injury rats.Materials and Methods: We established an animal model of cerebral infarct by occlusion of the middle cerebral a...

متن کامل

Protective effects of tanshinone IIA sodium sulfonate on ischemia-reperfusion-induced myocardial injury in rats

Objective(s): This study investigated the protective effect of tanshinone IIA sodium sulfonate (TSS) on ischemia-reperfusion (I/R) induced cardiac injury, and the underlying mechanism of action. Materials and Methods:Male Sprague-Dawley rats were subjected to a 30-min coronary arterial occlusion followed by 24 hours' reperfusion. Half an hour before the left coronary artery ligation, rats were ...

متن کامل

Preconditioning Effect of High-Intensity Aerobic Training on Myocardial Ischemia-Reperfusion Injury and Beclin-1 Gene Expression in Rats

Purpose: Ischemia-Reperfusion (IR) injury is one of the most common cardiac disorders leading to irreversible heart damage. Many underlying mechanisms seem to be involved, among which disruption of cellular autophagy balance. Since physical training has a beneficial effect on the improvement of autophagy balance, it may have a cardioprotective effect against IR injury. This study investigates t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013